

Hydrogen: The Perfect Fuel

- Abundant, renewable, indigenous (not freely available).
- Can meet all energy needs combustion to electricity.
- Produces least polluting emissions.

Future Energy System

Solar and Hydrogen: The Perfect Partnership

- Solar technologies need storage mechanism (hydrogen).
- Hydrogen needs renewable production resource (solar).
- Both need larger, combined constituencies.

1970's

Fuel Usage - 1998

Country	Petroleum Usage (million BBL /day)	Population (millions)	Petroleum Capita/year
U.S.	18.9	270	25.5
China	4.1	1255	1.2
India	1.8	970	0.7

Bring China and India to U.S. Level

Roundtrips to moon 38 million

Average vehicle mileage = 15 miles/gallon

Distance to moon = 239,000 miles

Oil Issues

- U.S. Imports
- Middle East Supply
- World Oil Production Peak

Hydrogen Technology Development Pathway

Production toughest problem Storage almost as difficult **Utilization** more easily solved **Transition** can start today

Hydrogen Production Feedstock

- Fossil fuels
- Hydrogen sulfide
- Biomass
- Water

Hydrogen Costs - \$/MBtu

Steam reformation of natural gas = 3 x (natural gas cost)
Electrolysis using electricity at 5¢/kWH = \$30/MBtu

Storage costs require the addition of » 20%

Renewable Based Process

- PV electrolysis
- Photoelectrochemical
- Photobiological
- Thermochemical (high temperature from solar)

Hydrogen Production Process

Goals

- Must be driven by renewable energy and use renewable feedstock.
- Must become cost-competitive in meeting niche market needs.
- Must be capable of scale-up for large markets.

Hydrogen Production Process

Predictions

- Production will remain largest technological challenge.
- Photoelectrochemical processes will advance beyond PV-electrolysis and photobiological processes.
- Lower cost processes will use low cost dyes in place of semi-conductors.

Storage is a Function of Utilization

Hydrogen Storage

State of the Art

Gas pressure storage

New concepts

Absorber storage

Metal hydride storage

280° C

Fuel Storage Numbers

(for 2000 lb vehicle, 250 mile range, 40 mpg)

Fuel Type	Weight (lbs)	Volume (ft ³)
Gasoline	50	1
Liquid H ₂ – ICE – FC	90	6
FC - FC	40	3
Compressed H ₂ – ICE – FC	1500	27
² – FC	700	12
Lead acid battery	4700	31
Advanced battery	650	10

Volume Comparisons

Internal Combustion Engine (ICE)

Hydrogen Storage

Weight Comparisons Internal Combustion Engine

Hydrogen Storage Technology

Goals

- Energy uptake and release at moderate temperatures
- Weight and volume competitive with liquid hydrogen.

Hydrogen Storage Technology

Predictions

- High-pressure vessel for gaseous storage will be first technological success.
- Second advance will be in chemically doped hydride or super-carbon storage.

Utilization by Daimler Chrysler

NECAR 4: Fuel Cell Vehicle

Volume Comparisons Internal Combustion Engine (ICE) vs. Fuel Cell

Jeep Commander Fuel Cell Vehicle

From: Daimler Chrysler Hightech Report

Jeep Commander Fuel Cell Vehicle

Costs

Internal Combustion Engine Fuel Cell

\$50/ Kw \$3,000/ Kw

Fuel Cell Comparison Values

	Operating Temperatures (°C)	Cost (\$/kVV)	Electricity Price ¹ (\$/kW)
PEM	80	\$3,000	0.18 - 0.22
PAFC	150-220	\$3,000 - \$3,500	0.22 - 0.32
MCFC	600-700	\$1,500 - \$3,000	0.20 - 0.24
SOFC	1,000	\$1,000 - \$2,000	0.18 - 0.24
AFC ¹ Based on NG cos	70 st of \$6/MBtu	N/A	N/A

Hydrogen Energy Utilization

Goals

- Hydrogen-powered vehicle with no weight or safety penalties
- Electrical vehicle powered by fuel cell
- Hydrogen-fueled internal combustion engine.

Hydrogen Energy Utilization

Predictions

- Commuter car will resolve weight/safety issue.
 - Will be electrically powered with a fuel cell.
- Hydrogen/Natural Gas vehicle will lead transition to hydrogen.
 - Will have "lean-burn" engine, with no catalytic converter needed.

Safety Issues

"What Really Downed the Hindenburg?"

by Addison Bain
 Popular Science, November 1997

Hydrogen Energy Transition

- Will be driven by environmental considerations
 - Clean Air Act
 - California Southcoast Air Quality Management District Regulations.